Engineering
September 3, 2021
World First! Successful Space Flight Demonstration of Detonation Engines for Deep Space Exploration
A research group at the Institute of Materials and Systems for Sustainability, 黑料网 and the Graduate School of Engineering, 黑料网, in collaboration with Keio University, Institute of Space and Astronautical Science (ISAS) of the Japan Aerospace Exploration Agency (JAXA), and the Muroran Institute of Technology, has successfully demonstrated a detonation engine in space flight. This is the world's first successful demonstration of a detonation engine in space flight.
The detonation engine system developed in this study was loaded onto the mission section of the sounding rocket S-520-31 and launched from the JAXA Uchinoura Space Center at 5:30 a.m. on July 27, 2021. After the separation of the first stage rocket, the rotating detonation engine and pulse detonation engine were successfully operated in space, and photo images, pressure, temperature, vibration, position, and attitude data were acquired by telemetry and RATS (Reentry and Recovery Module with Deployable Aeroshell Technology for Sounding Rocket Experiment).
The detonation engine generates detonation and compression waves at extremely high frequencies (1-100 kHz) to drastically increase reaction speed, leading to radical reduction of rocket engine weights and high performance by easy generation of thrust. The success of this space flight demonstration will bring the detonation engine much closer to practical use as a kick motor for deep space exploration, and as a first and second stage engine for rockets.
The results of this research will be published in academic journals after detailed analysis of the flight data. The development of the detonation engine system was carried out in cooperation with Nets Co., Ltd., and Meiji Electric Industries Co., Ltd.
This research was supported by the Strategic Development Research (Engineering) of the Advisory Committee for Space Engineering, Institute of Space and Astronautical Science, JAXA, from 2014-2021, the NEDO Feasibility Study Program on Energy and New Environmental Technology from 2014-2016, and the JSPS Grant-in-Aid for Specially Promoted Research from 2019-2023.
Significance of the results
The success of this space flight demonstration will bring the detonation engine much closer to practical use as a kick motor for deep space exploration, and as a first and second stage engine for rockets.
Existing rocket engines will be replaced by detonation engines, because detonation engines are lighter and have higher performance. In other words, the results of this research will be a catalyst for major changes in aerospace engines and systems.
Researcher Contact Information
黑料网
Institute of Materials and Systems for Sustainability
Jiro Kasahara, Professor
TEL: +81-52-789-4404
E-mail: kasahara@nuae.nagoya-u.ac.jp
黑料网 team members researching detonation engine system (DES) part
Jiro Kasahara (Professor), Koichi Matsuyama (Designated Professor), Ken Matsuoka (Associate Professor), Akira Kawasaki (Assistant Professor), Hiroaki Watanabe (Assistant Professor), Noboru Itouyama (Designated Assistant Professor), Keisuke Goto (Designated Assistant Professor), Kazuki Ishihara (Graduate Student), Valentin Buyakofu (Graduate Student), Tomoyuki Noda (Graduate Student), Yuki Akimoto (Graduate Student), and Koyo Kikuchi (Graduate Student)
Related information
Article on ISAS/JAXA web site (in Japanese)
Propulsion and Energy Systems Engineering Research Group, 黑料网
Related published journal papers of this project
S. Sawada, K. Goto,K. Ishihara, A. Kawasaki, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki, Experimental Study of Torque Around the Axial Direction on Rotating Detonation Engines, Journal of Propulsion and Power (accepted 2nd July, 2021)
K. Goto, Y. Kato, K. Ishihara, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki, D. Nakata, K. Higashino, and N. Tanatsugu, Thrust Validation of Rotating Detonation Engine System by Moving Rocket Sled-Test, Journal of Propulsion and Power, Vol.37, No. 3, 2021, pp.419-425.
K. Matsuoka, M. Tanaka, T. Noda, A. Kawasaki, J. Kasahara, Experimental Investigation on a Rotating Detonation Cycle with Backflow of Burned Gas,Combustion and Flame, Vol.225, 2021, pp.13-19.
M. Yamaguchi, K. Matsuoka, A. Kawasaki, J. Kasahara, H. Watanabe, A. Matsuo, Investigation of combustion modes and pressure of reflective shuttling detonation combustor, Proceedings of the Combustion Institute, Vol.38, No. 3, 2021, pp.3615-3622.
R. Yokoo, K. Goto, J. Kim, A. Kawasaki, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki, Propulsion Performance of Cylindrical Rotating Detonation Engine, AIAA Journal , Vol. 58, No. 12, 2020, pp.5107-5116.
K. Matsuoka, H., Taki, A. Kawasaki, J. Kasahara, H. Watanabe, A. Matsuo, and T. Endo, Semi-Valveless Pulse Detonation Cycle at a Kilohertz-scale Operating Frequency, Combustion and Flame, Vol. 205, 2019, pp. 434-440.
K. Goto, J. Nishimura, A. Kawasaki, K. Matsuoka, J. Kasahara, A. Matsuo, I. Funaki, D. Nakata, M. Uchiumi, K. Higashino, Experimental Propulsive Performance and Heating Environment of Rotating Detonation Engine with Various Throat Geometries, Journal of Propulsion and Power, Vol. 35, No. 1, 2019, pp.213-223.
A. Kawasaki, T. Inakawa, J. Kasahara, K. Goto, K. Matsuoka, A. Matsuo, I. Funaki, Critical Condition of Inner Cylinder Radius for Sustaining Rotating Detonation Waves in Rotating Detonation Engine Thruster, Proceedings of the Combustion Institute, Vol. 37, No. 3, 2019, pp. 3461-3469.
K. Matsuoka, S. Takagi, J. Kasahara, A. Matsuo, T. Endo, Validation of Pulse Detonation Operation in Low-Ambient-Pressure Environment Journal of Propulsion and Power, Vol. 34, No. 1, 2018, pp.116-124.
S. Nakagami, K. Matsuoka, J. Kasahara, Y. Kumazawa, J. Fujii, A. Matsuo, I. Funaki, Experimental Visualization of the Structure of Rotating Detonation Waves in a Disk-Shaped Combustor, Journal of Propulsion and Power, Vol. 33, No. 1, 2017, pp.80-88.
K. Matsuoka, T. Morozumi, S. Takagi, J. Kasahara, A. Matsuo, I. Funaki, Flight Validation of a Rotary-Valved Four-Cylinder Pulse Detonation Rocket, Journal of Propulsion and Power, Vol. 32, No. 2, 2016, pp.383-391.
H. Nakayama, T. Moriya, J. Kasahara, A. Matsuo, Y. Sasamoto, and I. Funaki, Stable Detonation Wave Propagation in Rectangular-Cross-Section Curved Channels, Combustion and Flame, Vol. 159, 2012, No. 2, pp.859-869.
K. Kawane, S. Shimada, J. Kasahara, and A. Matsuo, The Influence of Heat Transfer and Friction on the Impulse of a Detonation Tube, Combustion and Flame , Vol. 158, No. 10, 2011, pp.2023-2036.
J. Kasahara, A. Hasegawa, T. Nemoto, H. Yamaguchi,T. Yajima , T. Kojima, Performance Validation of a Single-Tube Pulse Detonation Rocket System, Journal of Propulsion and Power, Vol.25, No.1, January-February 2009, pp.173-180.